解决问题描述
产品中的snort采用nfqueue从内核层获取数据包到应用层,因为nfqueue是采用netlink实现,其中涉及到数据包从内核层到应用层传输时进行数据包拷。从应用层下发抉择数据到内核层也需要进行数据包的拷贝,导致性能比较差,从而将从netlink方面进行性能优化。采用的优化方式将snort中daq中获取数据包的源码nfqueue部分改为支持netlink mmap的方式。
研究netlink相关内容
netlink相关的内容讲解网上有很多,此处就不多说,研究netlink相关的内容,是为了修改nfqueue中netlink相关部分,采用netlink mmap实现。此部分研究的策略为,先实现一个简单的netlink样例,再将此样例改为支持netlink mmap的方式。
一个简单的netlink样例
内核空间代码实现
netlink_test_kernel.c
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/ip.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <net/sock.h>
#include <linux/netlink.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("hunter");
#define MAX_MSGSIZE 125
#define NETLINK_TEST 30
struct sock *nl_sk = NULL;
//向用户空间发送消息的接口
int sendnlmsg(char *message,int pid)
{
struct sk_buff *skb;
struct nlmsghdr *nlh;
int slen = 0;
if(!message || !nl_sk){
return -1;
}
slen = strlen(message);
// 为新的 sk_buffer申请空间
skb = nlmsg_new(slen, GFP_ATOMIC);
if(!skb){
printk(KERN_ERR "my_net_link: alloc_skb Error./n");
return -2;
}
//用nlmsg_put()来设置netlink消息头部
nlh = nlmsg_put(skb, 0, 0, NETLINK_TEST, slen, 0);
if(nlh == NULL){
printk("nlmsg_put failauer \n");
nlmsg_free(skb);
return -1;
}
memcpy(nlmsg_data(nlh), message, slen);
//通过netlink_unicast()将消息发送用户空间由pid所指定了进程号的进程
netlink_unicast(nl_sk, skb, pid, MSG_DONTWAIT);
printk("send OK!\n");
return 0;
}
static void nl_data_ready(struct sk_buff *skb)
{
struct nlmsghdr *nlh = NULL;
char *umsg = NULL;
char kmsg[] = "hello users!!!";
if(skb->len >= nlmsg_total_size(0))
{
nlh = nlmsg_hdr(skb);
umsg = NLMSG_DATA(nlh);
if(umsg)
{
printk("kernel recv from user: %s\n", umsg);
sendnlmsg (kmsg, nlh->nlmsg_pid);
}
}
}
struct netlink_kernel_cfg cfg = {
.input = nl_data_ready, /* set recv callback */
};
int myinit_module(void)
{
printk("my netlink in\n");
nl_sk = netlink_kernel_create(&init_net, NETLINK_TEST, &cfg);
if(nl_sk == NULL)
printk("kernel_create error\n");
return 0;
}
void mycleanup_module(void)
{
printk("my netlink out!\n");
sock_release(nl_sk->sk_socket);
netlink_kernel_release(nl_sk);
}
module_init(myinit_module);
module_exit(mycleanup_module);
用户空间代码实现
netlink_test_user.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
/* /usr/include/linux/netlink.h */
#include <linux/netlink.h>
#define NETLINK_TEST 30
int main()
{
/* 建立socket */
int skfd = socket(AF_NETLINK, SOCK_RAW, NETLINK_TEST);
if(skfd == -1){
perror("create socket error\n");
return -1;
}
/* netlink socket */
struct sockaddr_nl nladdr;
/*init netlink socket */
nladdr.nl_family = AF_NETLINK; /* AF_NETLINK or PE_NETLINK */
nladdr.nl_pad = 0; /* not use */
nladdr.nl_pid = 0; /* 传送到内核 */
nladdr.nl_groups = 0; /* 单播*/
/* bing 绑定netlink socket 与socket */
if( 0 != bind(skfd, (struct sockaddr *)&nladdr, sizeof(struct sockaddr_nl))){
perror("bind() error\n");
close(skfd);
return -1;
}
/* 构造msg消息*/
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
msg.msg_name = (void *)&(nladdr);
msg.msg_namelen = sizeof(nladdr);
#define MAX_MSGSIZE 1024
char buffer[] = "hello kernel!!!";
/* netlink 消息头 */
struct nlmsghdr *nlhdr;
nlhdr = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_MSGSIZE));
strcpy(NLMSG_DATA(nlhdr),buffer);
nlhdr->nlmsg_len = NLMSG_LENGTH(strlen(buffer));
nlhdr->nlmsg_pid = getpid(); /* self pid */
nlhdr->nlmsg_flags = 0;
struct iovec iov;
iov.iov_base = (void *)nlhdr;
iov.iov_len = nlhdr->nlmsg_len;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
sendmsg(skfd, &msg, 0);
/* recv */
//memset((char *)NLMSG_DATA(nlhdr), 0, 1024);
//recvmsg(skfd, &msg, 0);
int rv=0;
while ((rv = recvmsg(skfd, &msg, 0)) && rv >= 0) {
printf("while .....\n");
printf("kernel: %s\n", NLMSG_DATA(nlhdr));
}
//printf("kernel: %s\n", nlmsg_data(nlhdr));
close(skfd);
free(nlhdr);
return 0;
}
Makefile相关文档
CONFIG_MODULE_SIG=n
MODULE_NAME := netlink_test_kernel
obj-m :=$(MODULE_NAME).o
KERNEL_VER := $(shell uname -r)
KERNEL_DIR := /lib/modules/$(KERNEL_VER)/build
PWD := $(shell pwd)
all:
$(MAKE) -C $(KERNEL_DIR) M=$(PWD)
gcc -o netlink_test_user netlink_test_user.c
clean:
rm -fr *.ko *.o *.cmd netlink_test_user $(MODULE_NAME).mod.c
编译运行
运行Makefile会生成相应的ko文件和相应的应用可执行文件
首先将内核文件插入内核,为了能够看到内核调试信息,先用dmesg -C
清空内核原来的信息,随后再插入内核ko模块,执行dmesg
查看消息。
root netlink$ dmesg -C
root netlink$ insmod netlink_test_kernel.ko
root netlink$ dmesg
[122839.783666] my netlink in
root netlink$
root netlink$
root netlink$ dmesg
[122839.783666] my netlink in
[122852.543073] kernel recv from user: hello kernel!!!
[122852.543076] send OK!
root netlink$
应用层模块执行相应的二进制文件。
root netlink$ ./netlink_test_user
while .....
kernel: hello users!!!
修改为支持netlink_mmap的netlink样例
内核空间代码实现
netlink_test_kernel.c
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/ip.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <net/sock.h>
#include <linux/netlink.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("hunter");
#define MAX_MSGSIZE 125
#define NL_FR_SZ 16384
#define TDB_NLMSG_MAXSZ (NL_FR_SZ / 2 - NLMSG_HDRLEN - MAX_MSGSIZE \
- MAX_MSGSIZE)
#define NETLINK_TEST 30
struct sock *nl_sk = NULL;
static int tdb_if_info(struct sk_buff *skb, struct netlink_callback *cb)
{
struct nlmsghdr *nlh;
nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
cb->nlh->nlmsg_type, TDB_NLMSG_MAXSZ, 0);
if (!nlh)
return -EMSGSIZE;
nlmsg_data(nlh);
/* Fill in response. */
char kmsg[] = "hello users!!!";
int slen = strlen(kmsg);
memcpy(nlmsg_data(nlh), kmsg, slen);
return 0;
}
static int tdb_if_proc_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
{
char kmsg[] = "hello users!!!";
char *m = NULL;
m = nlmsg_data(nlh);
if(m)
{
printk("kernel recv from user: %s\n", m);
}
struct netlink_dump_control c = {
.dump = tdb_if_info,
//.data = m,
.min_dump_alloc = NL_FR_SZ / 2,
};
return netlink_dump_start(nl_sk, skb, nlh, &c);
}
static void tdb_if_rcv(struct sk_buff *skb)
{
/* TODO remove the mutex for concurrent user-space updates. */
struct nlmsghdr *nlh = NULL;
nlh = nlmsg_hdr(skb);
tdb_if_proc_msg(skb, nlh);
}
struct netlink_kernel_cfg cfg = {
.input = tdb_if_rcv, /* set recv callback */
};
int myinit_module(void)
{
printk("my netlink in\n");
nl_sk = netlink_kernel_create(&init_net, NETLINK_TEST, &cfg);
if(nl_sk == NULL)
printk("kernel_create error\n");
return 0;
}
void mycleanup_module(void)
{
printk("my netlink out!\n");
sock_release(nl_sk->sk_socket);
netlink_kernel_release(nl_sk);
}
module_init(myinit_module);
module_exit(mycleanup_module);
用户空间代码实现
netlink_test_user.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <linux/socket.h>
#include <sys/mman.h>
#include <poll.h>
#include <errno.h>
/* /usr/include/linux/netlink.h */
#include <linux/netlink.h>
#define NETLINK_TEST 30
#ifndef SOL_NETLINK
#define SOL_NETLINK 270
#endif
int g_skfd;
unsigned int g_ring_size;
void *g_rx_ring;
void *g_tx_ring;
unsigned int g_tx_fr_off;
unsigned int g_rx_fr_off;
int main()
{
printf("run....\n");
/* 建立socket */
g_skfd = socket(AF_NETLINK, SOCK_DGRAM, NETLINK_TEST);
if(g_skfd == -1){
perror("create socket error\n");
return -1;
}
struct sockaddr_nl addr = {
.nl_family = AF_NETLINK,
};
addr.nl_pid = getpid();
/* bing 绑定netlink socket 与socket */
if( 0 != bind(g_skfd, (struct sockaddr *)&addr, sizeof(addr))){
perror("bind() error\n");
close(g_skfd);
return -1;
}
//Ring setup
unsigned int block_size = 16 * getpagesize();
printf("block_size=%d\n", block_size);
struct nl_mmap_req req = {
.nm_block_size = block_size,
.nm_block_nr = 64,
.nm_frame_size = 16384,
.nm_frame_nr = 64 * block_size / 16384,
};
//void *rx_ring, *tx_ring;
/* Configure ring parameters */
if (setsockopt(g_skfd, SOL_NETLINK, NETLINK_RX_RING, &req, sizeof(req)) < 0)
{
printf("set rx_ring erro=%d!!!\n", errno);
exit(1);
}
if (setsockopt(g_skfd, SOL_NETLINK, NETLINK_TX_RING, &req, sizeof(req)) < 0)
{
printf("set tx_ring erro!!!\n");
exit(1);
}
/* Calculate size of each invididual ring */
g_ring_size = req.nm_block_nr * req.nm_block_size;
/* Map RX/TX rings. The TX ring is located after the RX ring */
g_rx_ring = mmap(NULL, 2 * g_ring_size, PROT_READ | PROT_WRITE,
MAP_SHARED, g_skfd, 0);
if ((long)g_rx_ring == -1L)
exit(1);
g_tx_ring = g_rx_ring + g_ring_size;
//Message transmission
struct nl_mmap_hdr *hdr;
struct nlmsghdr *nlh_tx;
hdr = g_tx_ring + g_tx_fr_off;
if (hdr->nm_status != NL_MMAP_STATUS_UNUSED)
/* No frame available. Use poll() to avoid. */
exit(1);
nlh_tx = (void *)hdr + NL_MMAP_HDRLEN;
/* 构造msg消息*/
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
msg.msg_name = (void *)&(addr);
msg.msg_namelen = sizeof(addr);
#define MAX_MSGSIZE 1024
char buffer[] = "hello kernel!!!";
/* netlink 消息头 */
//struct nlmsghdr *nlhdr;
//nlhdr = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_MSGSIZE));
strcpy(NLMSG_DATA(nlh_tx),buffer);
//nlh->nlmsg_len = NLMSG_LENGTH(strlen(buffer));
nlh_tx->nlmsg_len = sizeof(*nlh_tx) + sizeof(buffer);
nlh_tx->nlmsg_pid = getpid(); /* self pid */
nlh_tx->nlmsg_flags = 0;
printf("sendto.....\n");
/* Fill frame header: length and status need to be set */
hdr->nm_len = nlh_tx->nlmsg_len;
hdr->nm_status = NL_MMAP_STATUS_VALID;
struct sockaddr_nl nladdr = {
.nl_family = AF_NETLINK,
};
if (sendto(g_skfd, NULL, 0, 0, &nladdr, sizeof(nladdr)) < 0)
exit(1);
g_tx_fr_off = (g_tx_fr_off + req.nm_frame_size) % g_ring_size;
struct nl_mmap_hdr *hdr_rx;
struct nlmsghdr *nlh_rx;
unsigned char buf[16384];
ssize_t len;
struct pollfd pfds[1];
pfds[0].fd = g_skfd;
pfds[0].events = POLLIN | POLLERR;
pfds[0].revents = 0;
if (poll(pfds, 1, -1) < 0 && errno != -EINTR)
exit(1);
/* Check for errors. Error handling omitted */
if (pfds[0].revents & POLLERR)
exit(1);
/* If no new messages, poll again */
if (!(pfds[0].revents & POLLIN))
exit(1);
/* Process all frames */
while (1) {
/* Get next frame header */
printf("recev ....\n");
hdr_rx = g_rx_ring + g_rx_fr_off;
if (hdr_rx->nm_status == NL_MMAP_STATUS_VALID)
{
printf("Regular memory mapped frame.\n");
/* Regular memory mapped frame */
nlh_rx = (void *)hdr_rx + NL_MMAP_HDRLEN;
len = hdr_rx->nm_len;
/* Release empty message immediately. May happen
* on error during message construction.
*/
if (len == 0)
goto release;
} else if (hdr_rx->nm_status == NL_MMAP_STATUS_COPY) {
printf(" Frame queued to socket receive queue.\n");
/* Frame queued to socket receive queue */
len = recv(g_skfd, buf, sizeof(buf), MSG_DONTWAIT);
if (len <= 0)
break;
nlh_rx = buf;
} else
/* No more messages to process, continue polling */
break;
printf("kernel: %s\n", NLMSG_DATA(nlh_rx));
release:
/* Release frame back to the kernel */
hdr_rx->nm_status = NL_MMAP_STATUS_UNUSED;
/* Advance frame offset to next frame */
g_rx_fr_off = (g_rx_fr_off + req.nm_frame_size) % g_ring_size;
}
close(g_skfd);
return 0;
}
编译运行
运行Makefile会生成相应的ko文件和相应的应用可执行文件
首先将内核文件插入内核,为了能够看到内核调试信息,先用dmesg -C
清空内核原来的信息,随后再插入内核ko模块,执行dmesg
查看消息。
root netlink$ dmesg -C
root netlink$ insmod netlink_test_kernel.ko
root netlink$ dmesg
[122839.783666] my netlink in
root netlink$
root netlink$
root netlink$ dmesg
[122839.783666] my netlink in
[122852.543073] kernel recv from user: hello kernel!!!
应用层模块执行相应的二进制文件。
root netlink$ ./netlink_test_user
run....
block_size=65536
sendto.....
recev ....
Regular memory mapped frame.
kernel: hello users!!!
recev ....
研究nfqueue相关内容
经过上面的研究,如何将netlink改为支持零拷贝已实现。下一步研究nfqueue相关内容即可,nfqueue相关的内容讲解网上有很多,此处就不多说,研究nfqueue相关的内容,是为了修改nfqueue相关部分,采用netlink mmap实现。此部分研究的策略为,先实现一个简单的nfqueue样例,再将此样例改为支持netlink mmap的方式。
一个简单的nfqueue样例
nfqueue_example.c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <errno.h>
#include <string.h>
#include <netinet/in.h>
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <linux/netfilter.h>
#include <libnetfilter_queue/libnetfilter_queue.h>
#include <libnetfilter_queue/libnetfilter_queue_udp.h>
#include <libnetfilter_queue/libnetfilter_queue_ipv4.h>
//#define QUEUE_NUM 10010
static uint16_t checksum(uint32_t sum, uint16_t *buf, int size)
{
while (size > 1) {
sum += *buf++;
size -= sizeof(uint16_t);
}
if (size)
sum += *(uint8_t *)buf;
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >>16);
return (uint16_t)(~sum);
}
static uint16_t checksum_tcpudp_ipv4(struct iphdr *iph)
{
uint32_t sum = 0;
uint32_t iph_len = iph->ihl*4;
uint32_t len = ntohs(iph->tot_len) - iph_len;
uint8_t *payload = (uint8_t *)iph + iph_len;
sum += (iph->saddr >> 16) & 0xFFFF;
sum += (iph->saddr) & 0xFFFF;
sum += (iph->daddr >> 16) & 0xFFFF;
sum += (iph->daddr) & 0xFFFF;
sum += htons(iph->protocol);
// 这是一个bug
//sum += htons(IPPROTO_TCP);
sum += htons(len);
return checksum(sum, (uint16_t *)payload, len);
}
static void udp_compute_checksum_ipv4(struct udphdr *udph, struct iphdr *iph)
{
/* checksum field in header needs to be zero for calculation. */
udph->check = 0;
udph->check = checksum_tcpudp_ipv4(iph);
}
int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg, struct nfq_data *nfad, void *data) {
uint32_t id;
struct nfqnl_msg_packet_hdr *ph;
unsigned char *payload;
int r;
struct iphdr *iph;
struct udphdr *udph;
struct tcphdr *tcph;
char saddr_str[16];
char daddr_str[16];
struct in_addr tmp_in_addr;
ph = nfq_get_msg_packet_hdr(nfad);
if (ph) {
id = ntohl(ph->packet_id);
r = nfq_get_payload(nfad, &payload);
if (r >= sizeof(*iph)) {
iph = (struct iphdr *)payload;
tmp_in_addr.s_addr = iph->saddr;
strcpy(saddr_str, inet_ntoa(tmp_in_addr));
tmp_in_addr.s_addr = iph->daddr;
strcpy(daddr_str, inet_ntoa(tmp_in_addr));
if (iph->protocol == IPPROTO_UDP) {
if (iph->ihl * 4 + sizeof(*udph) <= r) {//UDP数据包
udph = (struct udphdr *)(payload + iph->ihl * 4);
if (ntohs(udph->dest) == 10010) {//DUP数据包,端口为10010数据全部修改为字符'h'并以'\n'结尾后返回修改后的数据及ACCEPT裁决
if (iph->ihl * 4 + sizeof(*udph) < r && ntohs(iph->tot_len) - iph->ihl * 4 == ntohs(udph->len) && ntohs(udph->len) - sizeof(*udph) > 0) {
int offset = iph->ihl * 4 + sizeof(*udph);
memset(payload + offset, 'h', ntohs(udph->len) - sizeof(*udph));
memset(payload + iph->ihl * 4 + ntohs(udph->len) - 1, '\n', 1);
// 由于修改了udp数据包内容,因此需要重新计算udp校验和。
// libnetfilter_queue在udp校验和计算时有bug,因此计算校验和代码拷贝到本文件后修复使用。
//nfq_udp_compute_checksum_ipv4(udph, iph);
udp_compute_checksum_ipv4(udph, iph);
printf("ACCEPT & modified protocol:udp %s:%u -> %s:%u\n", saddr_str, ntohs(udph->source), daddr_str, ntohs(udph->dest));
} else {
printf("ACCEPT & !modified protocol:udp %s:%u -> %s:%u\n", saddr_str, ntohs(udph->source), daddr_str, ntohs(udph->dest));
}
nfq_set_verdict(qh, id, NF_ACCEPT, r, payload);
} else if (ntohs(udph->dest) == 10086) {//udp目的端口10086的数据包做DROP裁决
printf("DROP protocol:udp %s:%u -> %s:%u\n", saddr_str, ntohs(udph->source), daddr_str, ntohs(udph->dest));
nfq_set_verdict(qh, id, NF_DROP, 0, NULL);
} else {
printf("ACCEPT protocol:udp %s:%u -> %s:%u\n", saddr_str, ntohs(udph->source), daddr_str, ntohs(udph->dest));
nfq_set_verdict(qh, id, NF_ACCEPT, 0, NULL);
}
} else {//IP数据包,但不是UDP
printf("ACCEPT protocol:udp %s -> %s\n", saddr_str, daddr_str);
nfq_set_verdict(qh, id, NF_ACCEPT, 0, NULL);
}
} else if (iph->protocol == IPPROTO_TCP) {
if (iph->ihl * 4 + sizeof(*tcph) <= r) {//TCP数据包,含有TCP头
tcph = (struct tcphdr *)(payload + iph->ihl *4);
printf("ACCEPT protocol:tcp %s:%u -> %s:%u\n", saddr_str, ntohs(tcph->source), daddr_str, ntohs(tcph->dest));
nfq_set_verdict(qh, id, NF_ACCEPT, 0, NULL);
} else {//TCP数据包,但是不含有TCP数据包头
printf("ACCEPT protocol:tcp %s -> %s\n", saddr_str, daddr_str);
nfq_set_verdict(qh, id, NF_ACCEPT, 0, NULL);
}
} else {//IP数据包,但不是TCP
printf("ACCEPT protocol:%d %s -> %s\n", iph->protocol, saddr_str, daddr_str);
nfq_set_verdict(qh, id, NF_ACCEPT, 0, NULL);
}
} else {//非IP数据包
printf("ACCEPT unknown protocol\n");
nfq_set_verdict(qh, id, NF_ACCEPT, 0, NULL);
}
}
return 0;
}
int main(int argc, char *argv[]) {
struct nfq_handle *h;
struct nfq_q_handle *qh;
int r;
char buf[10240];
unsigned int portid, queue_num;
if (argc != 2) {
printf("Usage: %s [queue_num]\n", argv[0]);
exit(EXIT_FAILURE);
}
queue_num = atoi(argv[1]);
h = nfq_open();
if (h == NULL) {
perror("nfq_open error");
goto end;
}
if (nfq_unbind_pf(h, AF_INET) != 0) {
perror("nfq_unbind_pf error");
goto end;
}
if (nfq_bind_pf(h, AF_INET) != 0) {
perror("nfq_bind_pf error");
goto end;
}
qh = nfq_create_queue(h, queue_num, &cb, NULL);
if (qh == NULL) {
perror("nfq_create_queue error");
goto end;
}
if (nfq_set_mode(qh, NFQNL_COPY_PACKET, 0xffff) != 0) {
perror("nfq_set_mod error");
goto end;
}
while(1) {
r = recv(nfq_fd(h), buf, sizeof(buf), 0);
if (r == 0) {
printf("recv return 0. exit");
break;
} else if (r < 0) {
perror("recv error");
break;
} else {
nfq_handle_packet(h, buf, r);
}
}
end:
if (qh) nfq_destroy_queue(qh);
if (h) nfq_close(h);
return 0;
}
编译样例
gcc -l netfilter_queue nfqueue_example.c
部署测试环境
//清空所有规则
iptables -F
//先iptables的INPU链挂载一个测试规则
iptables -I INPUT -p icmp -j QUEUE --queue-num 1
//查看规则,可以看出没有任何数据包命中此条规则
iptables -L -n -v
Chain INPUT (policy ACCEPT 12 packets, 792 bytes)
pkts bytes target prot opt in out source destination
0 0 NFQUEUE icmp -- * * 0.0.0.0/0 0.0.0.0/0 NFQUEUE num 1
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
Chain OUTPUT (policy ACCEPT 8 packets, 1040 bytes)
pkts bytes target prot opt in out source destination
运行可执行程序
//此时有个中断一直ping这去往INPUT的数据包
root nfqueue$ ./a.out
Usage: ./a.out [queue_num]
root nfqueue$ ./a.out 1
ACCEPT protocol:1 192.168.96.1 -> 192.168.96.154
ACCEPT protocol:1 192.168.96.1 -> 192.168.96.154
ACCEPT protocol:1 192.168.96.1 -> 192.168.96.154
ACCEPT protocol:1 192.168.96.1 -> 192.168.96.154
//查看规则,命中4条
iptables -L -n -v
Chain INPUT (policy ACCEPT 97 packets, 6972 bytes)
pkts bytes target prot opt in out source destination
4 240 NFQUEUE icmp -- * * 0.0.0.0/0 0.0.0.0/0 NFQUEUE num 1
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
Chain OUTPUT (policy ACCEPT 70 packets, 7492 bytes)
pkts bytes target prot opt in out source destination
转载请注明:HunterYuan的博客 » 修改nfqueue支持零拷贝